The ape-human divide?

- DNA sequences apes and humans 98.2% similar

- the ape-human divide?
- Miocene 23.5 - 5.2 ma
 - early 23.5 –7 ma
 - late 7 – 5.2 ma
- Pliocene 5.2 - 1.6 ma
- Pleistocene 1.6-0.01 ma
- early Miocene
 - arboreal habitats
 - apes = arboreal adaptations
- late Miocene
 - grassland savannas
 - terrestrial bipeds =
- Hominoidea Hominidae
- bipedal locomotion
 - benefits of bipedalism
 - skeletal features of bipedalism
- Basal hominids 6-4 mya
- Primitive Australo-pithecines
 - 4-3 mya
- Derived Australo-pithecines
 - 3-1 mya
 - Derived =
 - Early Homo 2.5 – 1.6 mya

What does it take to be defined as human?

Confirmed in recent publicly sponsored experiments
humans and apes share a recent, common origin
the ape-human divide?
- Miocene 23.5 - 5.2 ma
 - early 23.5 –7 ma
 - late 7 – 5.2 ma
- Pliocene 5.2 - 1.6 ma
- Pleistocene 1.6 - 0.01
- early Miocene
 - arboreal habitats
 - apes = arboreal adaptations
- late Miocene
 - grassland savannas
 - terrestrial bipeds =

- Hominoidea Hominidae
- bipedal locomotion
 - benefits of bipedalism
 - skeletal features of bipedalism
- Basal hominids 6-4 mya
- Primitive Australopithecines
 - 4-3 mya
- Derived Australopithecines
 - 3-1 mya
 - Derived =
- Early Homo 2.5 – 1.6
 - mya

early to middle Miocene 23.5 –8 mya
tropical arboreal habitats

Miocene Apes 23.5 – 8 mya – Arboreal Adaptations

- Quadrupedal locomotion
- Head in front of spinal column
- Flat pelvis
- Prehensile hands & feet
- equal limb proportions

Proconsul sp.

- the ape-human divide?
- Miocene 23.5 - 5.2 ma
 - early 23.5 –7 ma
 - late 7 – 5.2 ma
- Pliocene 5.2 - 1.6 ma
- Pleistocene 1.6 - 0.01
- early Miocene
 - arboreal habitats
 - apes = arboreal adaptations
- late Miocene
 - grassland savannas
 - terrestrial bipeds =

- Hominoidea Hominidae
- bipedal locomotion
 - benefits of bipedalism
 - skeletal features of bipedalism
- Basal hominids 6-4 mya
- Primitive Australopithecines
 - 4-3 mya
- Derived Australopithecines
 - 3-1 mya
 - Derived =
- Early Homo 2.5 – 1.6
 - mya
changing environments

late Miocene and Pliocene 8 – 1.6 mya
expanding savanna habitats

Pleistocene 1.6 – 0.01 mya
savanna habitats
consequences for apes?

most ape species extinct by end of Miocene

but not all Miocene apes extinct

bipedalism = habitual upright walking

Definitions

- superfamily Hominoidea = Apes and humans
 - hominoids = both the quadrupedal and bipedal apes

- family Hominidae = humans and human ancestors
 - hominids = any of the bipedal (upright walking) human ancestors

- the ape-human divide?
 - Miocene 23.5 - 5.2 ma
 - early 23.5 –7 ma
 - late 7 – 5.2 ma
 - Pliocene 5.2 - 1.6 ma
 - Pleistocene 1.6 - 0.01
 - early Miocene
 - arboreal habitats
 - apes = arboreal adaptations
 - late Miocene
 - grassland savannas
 - terrestrial bipeds =

- Hominoidea Hominidae
- bipedal locomotion
- benefits of bipedalism
- skeletal features of bipedalism
- Basal hominids 6-4 mya
- Primitive Australo-pithecines
 - 4-3 mya
- Derived Australo-pithecines
 - 3-1 mya
 - Derived =
- Early Homo 2.5 – 1.6
 - mya
- benefits of bipedal locomotion
 - energy efficient – good for long distances
 - frees hands for carrying resources
 - frees hands for tool use
 - minimizes exposure to sun
 - visibility over tall grasses

- head balanced on spinal column
 - foramen magnum beneath skull
- reduction in muscle attachments at neck
 - nuchal crest smaller
- arms not used in locomotion
 - arms more “gracile” and shorter
- femur angled under body
 - keeps weight at central axis
- big toe not opposable
 - loss of prehensile feet

When did bipedalism arise?

Where are the fossils?

- Basal hominids 6-4 mya
- Primitive Australopithecines 4-3 mya
- Derived Australopithecines 3-1 mya
- Early Homo 2.5 – 1.6 mya

Species names follow binomial form & MUST be in **ITALICS** or **UNDERLINED**

Homo sapiens or Homo sapiens
- Basal hominids 6-4 mya

- *Sahelanthropus; Orrorin; Australopithecus anamensis*

- *Ardipithecus ramidus* 6-4.4 mya
 - ardi = ground; pithecus = ape
 - ramidus = root
 - small ape-like cranium
 - “gracile” limbs
 - “bowl-shaped” pelvis
 - basal foramen magnum

- Primitive Australopithecines 4-3 mya
 - primitive = older, ancestral

- *Australopithecus afarensis* 3.9 – 2.8 mya
 - fully bipedal
 - small brain size 400-500 ml
 - “Lucy” 3.18 mya
 - 40% complete skeleton
 - pelvis and lower limb bones suggest fully bipedal
 - long arms and curved fingers suggest arboreal ability

- Laetoli footprints 3.75 mya
 - unequivocal proof of bipedal locomotion
 - not fully modern, but close!
 - *Australopithecus afarensis?*

- Derived Australopithecines 3-1 mya
 - Derived = specialized
 - “gracile” = lightly built
 - *A. africanus* 3.5 – 2.3 mya
 - southern Africa ONLY
 - fully bipedal
 - lightly built for moving long distances
 - small brain size 400-500 ml
- Derived Australopithecines 3-1 mya
 - "robust" = heavily built
 - *A. robustus* 1.8 – 1.0 mya
 - southern Africa ONLY
 - *A. boisei* 2.2 – 1.3 mya
 - *A. aethiopicus* 2.7 – 2.3 mya
 - fully bipedal
 - small brain 400-500 ml
 - massive jaws, teeth!
 - adaptation for chewing hard plant fibers and seeds

- Early *Homo*
 - *Homo habilis* 1.9 – 1.6 mya
 - same Genus as us!
 - same time as Derived Australopithecines
 - Specialized anatomy
 - larger brain 600-700 ml
 - taller, vaulted cranium
 - smaller molars and narrower premolars

Take-home messages
- Bipedalism the key to survival on savanna
- Bipedalism preceded the development of large brains, use of stone tools, language and other "human" traits
- Once bipedalism "solved" by evolution, explosion of diversity

Take-home question
- What impact did bipedalism and life in an open savanna have on early hominid behavior?