- dispersal of late *H. erectus*
 - entry into Europe
 - Orce, Spain ca. 1 mya
 - Gran Dolina >780 ka
 - abundant sites <500 ka
 - late *H. erectus* 600-250 ka
 - anatomical characteristics
 - Arago, Bilzingsleben 400 ka
 - Sima de los Huesos 300 ka
 - Stineheim, Swanscombe 250 ka
 - gradual “assembly” of neanderthal anatomy
 - Out of Africa, Again?
 - European carnivore guild
 - late *H. erectus* behavior
 - Torralba-Ambrona
 - cooperative hunting?
 - Bilzingsleben
 - structured use of space
 - hunter-gatherer social organization
 - Paleoclimate

- divergence of East Asian *Homo erectus*
 - allopatry = populations that occupy exclusive geographic ranges
 - sympathy = populations occupying the same, or overlapping ranges
 - allopatric populations do not exchange genes/culture and therefore can accumulate genetic/cultural differences via mutation/innovation

- if Asian *H. erectus* is an allopatric species…
 - “progressive” forms of late *H. erectus* in Asia must represent convergent evolution with archaic *Homo sapiens*
 - KEY: was Asian *H. erectus* reproductively isolated?
western Europe even more of a cul-de-sac?

- early group
 - Orce, Spain 1-0.78 mya
 - Oldowan stone tools
 - paleomag & fauna
 - Gran Dolina, Atapuerca, Spain
 - Oldowan and hominid fossils below Brunhes-Matuyama boundary (>780 ka)
 - *H. antecessor*?
 - *H. neanderthalensis*?

- middle group ca. 500
 - Arago, France
 - Bilzingsleben, Germany
 - Vertesszollos, Hungary
 - ancestral
 - occipital more angular
 - derived
 - parietal expansion
 - “incipient” retromolar gap

- late group ca. 300 ka
 - Sima de los Huesos
 - a “true” population
 - derived traits
 - robust mandible
 - robust lower limbs
 - double-arched brow ridges
 - incipient supraniac fossa
 - substantial mid-facial projection
 - large anterior teeth
 - retromolar space
 - rounded occipital profile

AT 5, Sima de los Huesos, Atapuerca, Spain
late *Homo erectus* anatomy
- ancestral traits
 - large brow ridges
 - low, flattened frontal bone
 - thick cranial walls
 - massive, chinless mandible
 - powerful postcranium
- derive traits
 - cranial capacity >1000 cc
 - rounded occipital region
 - expanded parietals
 - broader frontal bone
 - brow ridges distinctive arches
- anticipates neandertals?
 - similar to Asian trajectory?

classic neandertal
- robust, heavily muscled postcrania
- long, low, “globular” skull
- prognathic at midline
- occipital bun
- parietal expansion
- large cranial capacity
 - 1245-1740 cc
- retromolar gap
- root fusion (taurodontism)

Out of Africa, Again, and Again?
- late *H. erectus* (sensu lato; i.e., late *H. ergaster*)
 - evolved in Africa & dispersed ca. 500 ka
 - *Homo heidelbergensis*
 - we will consider again …come back after midterm
- late *H. erectus* (a.k.a. *H. antecessor*) first to permanently settle Europe
 - linked to Africa based on similarities between early groups in ancestral traits
 - …based on Acheulian in Europe

Klein phylogeny
Asian fossils are *H. erectus* (sensu stricto); European fossils are *H. neanderthalensis*

Rightmire phylogeny
Asian & European fossils are *H. heidelbergensis*
many (but not all) early European archaeological sites contain Acheulian bifaces

non-biface assemblages Clactonian, Tyacian...

Important assumptions about link between population biology and culture

Europe: why extensive only after 500 ka?
- no apparent biogeographic barrier?
- carnivore guild (group of larger carnivores) not African-like until after 500 ka
- No extensive “room” for hominids as a large-bodied predator until after this time?

dispersal a complex ecological process

late Homo erectus behavior
- cooperative hunting???
- Torralba-Ambrona, Spain, ca. 500 ka
 - faunal assemblage dominated by elephant and horse bones
 - Acheulian tools thinly scattered throughout bone assemblage
 - originally interpreted as elephant hunting camp
 - would require cooperation among individuals to be able to hunt such large and dangerous animals

Taphonomic reinterpretation
- most elephants old → natural death profile
- abundant carnivore coprolites → carnivore bone accumulation
- bones heavily weathered and abraded → stream flow and surface exposure
- few cutmarks → limited hominid involvement
late *Homo erectus* behavior
- cooperative hunting???
- Bilzingsleben, Germany, ca. 400 ka
 - elephant bones from young and old animals
 - elephant bone used as raw material for manufacturing tools
 - selective transport of “meaty” elements from young rhino as well as horse and bison
- Taphonomic issues
 - limited evidence of carnivore activity
 - animal fossils suggest that elephants scavenged, but rhino, horse and bison were hunted
- Note: wooden hunting spears from Schoningen, Germany (also ca. 400 ka) are good evidence of extensive hunting activity

structure use of space
- Bilzingsleben ca. 400 ka
 - evidence
 - ovals/circles of debris
 - discrete clusters of charcoal
 - discrete clusters of “ anvils” and worked stone/bone
 - interpretation
 - structures
 - family hearths
 - communal workshop
 - modern hg organization?
 - living area divided between families
 - communal area for socializing and cooperative labor
 - home base hypothesis finally works?
 - sexual division of labor; intensive social activity

cold

<table>
<thead>
<tr>
<th>3.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-2.0</td>
</tr>
</tbody>
</table>

warm

glacial periods when massive ice sheets expanded on the continents
Milankovitch Cycles
- eccentricity 100 ka
- obliquity 41 ka
- precession 19/22 ka
- changes distribution of incoming solar energy just enough to shift liquid water to ice (or visa versa)
- summer insolation in the Northern hemisphere is insufficient to melt winter snowfall; ice sheets grow!

Millennial-scale climate oscillations
- abrupt shifts in global temp every 1000-1200 years, driven by
- oceanic and atmospheric circulation are primary cause

oxygen isotopes 18O/16O
- fluctuations in the 18O/16O ratio in the carbonate (CaCO$_3$) “shells” of marine organisms record changes in the amount of ice on the continents
- proxy record for changes between cold-glacial and warm-interglacial conditions
- eye on the ball…
- fluctuations produced changes in environmental conditions for human behavioral evolution
- Climate change leads to dramatic reorganization of terrestrial ecosystems
 - Shift of species/communities in space
 - Creation of new "assemblages" of species

18O depleted relative to 16O = Interglacial
18O enriched relative to 16O = Glacial

Cold Glacial labeled with EVEN numbers
Warm Interglacial labeled with ODD numbers

Sea level – Transformed continents
Last Glacial Maximum 18-22 ka
–120 m below modern