Review Sheet
Anthropology 112, Spring 2003

THIS IS A SIMPLE LIST OF PROMINENT SITES, SPECIES NAMES AND TERMS THAT YOU SHOULD HAVE A HANDLE ON FOR THE MIDTERM. IT IS NOT AN EXHAUSTIVE LIST OF EVERYTHING YOUR ARE REQUIRED TO KNOW FOR THE CLASS.

PLEASE USE THE CLASS SLIDES AS A MORE COMPREHENSIVE STUDY GUIDE

Required readings for the midterm:

Textbook:

Klein: Chapters 1, 2, 3, 4, 5 and 8. Skim: Chapter 5 pp. 295 – 312 on morphology of H. sapiens, neandertalensis, heidelbergensis...

Other Readings:

Alcock Chapter 1
Shennan Chapter 2
Boyd and Silk Chapter 6
Boyd and Silk Chapter 7
Waters pp. 92-105, 36-43
Nicholson 2000
Millard 2000
Andreksky Chapter 2
Brantingham JAA
Potts JAR
Roche 1999
Whitten 1999
Turner 1992

Sites:
Aramis, Middle Awash
Allia Bay
Kanapoi
Harar, Middle Awash
Laetoli
Taung
Sterkfontein
Makapansgat
Kromdraai
Swartkrans

West Turkana
Gona
Lokalalei
Shungur Formation, Omo
Trinil
Zhoukoudian
Nariokotome, West Turkana
Koobi Fora
Olduvai Gorge Bed I
Olduvai Gorge Bed II
Lantian
Longgupo
Mojokerto
Sangiran
Nihewan basin
Ternifine
Sidi Aberachman
‘Ubeidiya
Dmanisi
Tranchera Gran Dolina

Biological Taxa:
Aegyptopithecus
Dryopithecus
Sivapithecus
Lufengpithecus
Ardipithecus ramidus
Australopithecus anamensis
Australopithecus afarensis
Australopithecus aethiopicus
Australopithecus africanus
Paranthropus boisei
Paranthropus robustus
Homo habilis
Homo rudolfensis
Homo ergaster
Homo erectus
Pithecanthropus erectus
Sinanthropus pekinensis

Geological Timescale:

Paleocene
Eocene
Oligocene
Miocene
Pliocene
Pleistocene; lower, middle, upper
Holocene
Key Paleomagnetic Dates:
Gauss-Matuyama boundary
Matuyama Reversed chron
Olduvai Normal sub-chron
Jaramillo Normal sub-chron
Matuyama-Brunhes (or Brunhes-Matuyama) boundary

Theoretical Concepts:
genetics
culture
behavior
environment
Darwinian evolution
natural selection
sexual selection
drift
inheritance
social learning
vertical transmission
vertical oblique transmission
horizontal transmission
variation
mutation
innovation
proximate cause
ultimate cause
reproductive success
sociality
dominance
home range
territory
male reproductive strategies
female reproductive strategies
systemic context
archaeological context
transformational process
matrix
provenience
association
primary context
secondary context
source-sink model
energy in sedimentary environments
common sedimentary environments
post-depositional process
relative time
absolute time
stratigraphy
law of superposition
biostratigraphy
paleomagnetism
accuracy
precision
resolution
direct dating
indirect dating
half-life
radiocarbon (14C) dating
radiocarbon calibration
potassium-argon (K-Ar or Ar-Ar) dating
how is the clock set?
what materials can be dated?
dating gap
Optically Stimulated Luminescence, Thermo
Luminescence
 glaciation
interglacial stage
Milankovitch cycle
eccentricity
18O/16O Isotopes
taphonomy
predepositional process
postdepositional process
collagen
hydroxyapatite
diagenesis
elements of stone technology
conchoidal fracture
expedient technology
formal technology
homology
analogy
convergent/parallel evolution
clade (cladistics)
grade
ancestral
derived
species
genera
reproductive isolation
arboreal hypothesis
visual predation hypothesis
hominoid
hominid
advantages of bipedalism
basal hominids
primitive australopithecines
derived australopithecines
australopithecine developmental schedule (life-history)
eary Homo
sexual dimorphism
limiting similarity
brain vs. brawn
principle of parsimony
economics and ecology of stone technology
Oldowan
Why the Oldowan?
social cognition hypothesis
“Killer Ape”
home base hypothesis
routed foraging
stone cache hypothesis
costs of becoming a predator
top predator
confrontational scavenger
non-confrontational scavenger
social confrontational scavenger
carnivore succession
Homo ergaster developmental schedule (life-history)
allopatry
sympatry
Old Stone Age/Lower Paleolithic
Acheulian
Developed Oldowan A and B
hand axe symmetry
chopper-chopping tool
Movius Line
dispersal
migration
barrier
corridor
Saharan “pump”
late dispersal into Europe

volcanic basalt, each with two or three flake scars along the edges and the bones of antelope were present in the fossil-bearing deposits. The author of the discovery claims to have the proof that australopithecines used stone tools. What scientific arguments could you use to refute his claim? What else would you need to know about the site to decide if his claims are plausible? (4 points)

NOTE THAT THIS QUESTION ASKS YOU TO SYNTHESIZE A NUMBER OF DIFFERENT IDEAS WE HAVE TALKED ABOUT IN THE CLASS: TAPHONOMY, ANATOMY, CULTURE, STONE TECHNOLOGY, DATING, ETC…

NOTE ALSO THAT IT IS ONLY WORTH 4 POINTS. THIS MEANS THAT THERE ARE MANY DIFFERENT WAYS TO ANSWER THIS QUESTION. HOWEVER, YOU NEED TO MENTION FOUR (4) UNIQUE THINGS, NOT JUST SAY THE SAME THING FOUR DIFFERENT WAYS! USE A SHORT OUTLINE EVEN FOR A SMALL QUESTION LIKE THIS TO ORGANIZE YOUR THOUGHTS BEFORE YOU START WRITING.

Example Short Answer Question:

Parts of a fragmentary fossil hominid skeleton have been discovered in East Africa and are believed to be Australopithecus boisei. The deposits have been dated using ⁴⁰K-⁴⁰Ar to around 1.7 million years ago. Fist-sized blocks of stone, a