• discovery of neanderthals
 – Engis Cave 1829; Forbes’ Quarry 1848; *Feldhofer Cave 1856; Spy 1886; 1930s in West Asia
 – King vs. Virchow
 • extinct species vs. pathology?
• geological antiquity
 – \(^{18}O/^{16}O\) Stages 186-25 ka
 • early: Baiche-Saint-Vaast 186 ka; Krapina 130 ka; Saccopastore 127-71 ka; Tabun E and Zuttiyeh Cave OIS 5? (dating gap)
 • middle: Europe and West Asia OIS 4 (71-45 ka)
 • late: Zafarraya 33ka; Arcy-sur-Cure 34 ka; Saint-Cesaire 36 ka; Vindija 28ka! (bone collagen)
• neanderthal anatomy
 – cranial/post-cranial robusticity
• contemporary hominids
 – earliest AMH
 – Europe: Les Eyzies 30 ka; Aurignacian ca. 40 ka
 – W. Asia: Skhul-Qafzeh 120-80 ka
• neanderthal functional anatomy
 – physical stress & endurance
 • upper body robusticity; “bowed” femur; mid-facial projection, large anterior dentition, rounded wear
 – cold adaptation
 • body shape/size; respiratory system; brain size
 – cognition/language
 • brain asymmetries; “relatively” flat basicranium; vertebral neural canals; Kebara hyoid
• species or sub-species?
 – pre-mating: chronological overlap, ecology overlap, mating behavior
 – post-mating: developmental biology
 – mtDNA from two Neandertals!

• Rudolf Virchow
 – fossils were modern humans displaying pathologies
 • rickets, arthritis, chronic pain
• William King
 – 1864 proposed that fossils from Europe were an “extinct species”
 • \textit{H. neanderthalensis}
• “pathology” argument impossible
 – would have to explain why all specimens display exact same pathological history
 – disease does not work this way…
• “great antiquity” established
 – association of neandertal fossils with stone tools and bones of extinct animals

• Oxygen Isotope Stages
 – OIS 6: 186-127 ka (penultimate glaciation)
 – OIS 5e-a: 127-71 ka (last interglacial)
 – OIS 4: 71-45 ka (early last glacial)
 – OIS 3: 45-25 ka (last interstadial)
 – OIS 2: 25-18 ka (last glacial maximum)
 – OIS 1: 18- present (terminal Pleistocene and Holocene)
• Neanderthals early group
 – OIS 6: 186-127 ka (penultimate glaciation)
 • Ehringsdorf Cave, Germany 242-186 ka U-Series/ESR
 – fauna and flora: 127-71 ka
 • Baiche-Saint-Vaast, France 190-159 ka
 – OIS 5e-a: 127-71 ka (last interglacial)
 • Krapina, Croatia 130 ka (most accepted)
 • Saccopastore, Italy
 – fauna and flora suggest OIS 5

• Neanderthals middle group
 – OIS 4: 71-45 ka (early glaciation)
 • majority of French fossils (?)
 • West Asian neanderthals
 – Kebara and Amud 65-47 ka
 – dating gap!

• Neanderthals late group
 – OIS 3: 45-25 ka (last interstadial)
 • Zafarraya 33ka
 • Arcy-sur-Cure 34 ka
 • Saint-Cesaire 36 ka
 • Vindija 28ka!
 – bone collagen dating
 • bone collagen often too young because of contamination

Amud 1, Israel

La Ferrasie, France

Saint-Cesaire, France

Krapina, Croatia ca. 130 ka
• cranial vault
 – long, low, relatively thin walled vault
 – mid-parietal maximum breadth
 – 1245-1740cc
 – double-arched browridge
 – supra-orbital sulcus
 – occipital bun
 – horizontal occipital torus
 – suprianiac fossa
 – less flexed basicrania

• facial anatomy
 – midline prognathicism
 – large nasal aperture
 – receding zygomatic
 – inflated maxillary above canine (no fossa)
 – large, round orbits
 – usually no chin
 – asymmetrical sigmoid notch on mandible

• dental anatomy
 – smaller cheek teeth
 (overlapping variability with AMH)
 – larger incisors
 – shovel-shaped maxillary incisors
 – rounded wear on all incisors (limited wear on P and M)
 – root fusion (taurodontism)
 – retromolar gap

• post-cranial anatomy
 – long cervical spines
 – modern hyoid bone
 – enlarged neural canals
 – thick, weakly curved ribs
 – broad, deep trunk
 – large muscle attachments
 – bowed femur shaft
 – short distal limb segments
 – average stature 166 cm (5’4”)

Amud 1, Israel
Saint-Cesaire, France
Shanidar 1, Iraq
Kebara 2, Israel
• neanderthal overview
 - long, low, “globular” skull
 - large cranial capacity
 - prognathic at midline with orbits and zygomatics “sweeping back”
 - robust, heavily muscled postcrania; barrel chested

Amud 1, Israel

• neanderthal contemporaries
 - East Asia =
 • late Homo erectus?
 - Sub-saharan Africa =
 • H. heidelbergensis?
 • early Anatomical Modern Humans?
 - West Asia =
 • early AMH!
 • Skhul-Qafzeh 120-80 ka
 • earlier than some neanderthals in West Asia!
 - Europe =
 • Cro-Magnon ca. 30 ka
 • Aurignacian Upper Paleolithic ca. 40 ka
 – this is a key issue!!!

Skhul 5, Israel

• anatomy of contemporaries
 - defined mostly on the absence of neanderthal traits!
 - large, rounded vault
 - less robust upper body
 - wide variability b/c
 • include fossils from a wide geographic area
 – sub-populations
 • mix of fossils from a broad temporal period
 – time averaging

• neanderthal functional anatomy
 - physical stress & endurance
 • upper body robusticity greater in neanderthals than contemporaries suggests greater muscular stresses on upper body
 – lower bodies similarly robust when scaled for body mass
 • slightly “bowed” femur with rounded shaft suggests greater stresses imposed by gluteus maximus which inserts onto gluteal ridge
 • midfacial projection, larger incisors and rounded wear on incisors suggest that anterior dentition used extensively as a “tool”
 – similar anterior dentition wear patterns seen in Inuit population
 - cold adaptation
 • body shape/size appears to follow Bergmann’s & Allen’s rules
 – $V = x^3$ while $SA = x^2$
 • distal limb segments are short relative to proximal limb segments (seen in many arctic populations)
 • barrel-shaped chest and massive nasal aperture and nasal cavities for air warming
 • brain size also follows Bergmann’s and Allen’s rules!
neanderthal functional anatomy

- cognition and language
 - brain asymmetries appear to be modern
 - left asymmetry in occipital region; right asymmetry in frontal
 - “relatively” flat basicranium
 - appears to have an impact on where the larynx “sits” in the throat, which impacts how well sound can be modified by the mouth
 - Klein concludes that Neanderthals maybe only produce a more limited range of sounds
 » Would this impair the development of a fully functional language?
 - vertebral neural canals are large compared to AMH
 - suggests at least a modern level of neuro-muscular control over ribcage and thus airflow used in vocalization
 - Kebara hyoid is essentially modern
 - hyoid bone forms the basis of muscular and cartilage attachments for the larynx and some muscles for floor of the mouth
 - may suggest that mouth muscles and larynx were fully functional as a speech organ

species or sub-species

- sub-species = a set of populations of a species that occupy different geographic areas and possess somewhat different characters; geographical variants of the same species
 - NOT REPRODUCTIVELY ISOLATED
- biological species = organisms that can mate and produce fertile offspring
 - REPRODUCTIVELY ISOLATED

pre-mating reproductive isolation =
- mechanisms that prevent mating from happening

post-mating reproductive isolation =
- mechanisms that prevent a fetus from developing to term OR
- mechanisms that lead hybrid offspring to be infertile themselves

Homo sapiens neanderthalensis or Homo neanderthalensis?

Klein phylogeny
heavily invested in model of neanderthals as separate species

- species or sub-species
 - pre-mating reproductive isolation = mechanisms that prevent mating from happening

- possible isolation IF…
 - there was no chronological overlap between neanderthals and anatomically modern humans
 » if they don’t meet in time they can’t mate
 - there was no ecological overlap between neanderthals and anatomically modern humans
 » if they don’t meet in space then they can’t mate
 - the behavioral features of one or both hominids were too unusual to produce any matings
 » if the “launch sequence” is wrong then no mating…
• species or sub-species
 – post-mating reproductive isolation = mechanisms that prevent development from happening
 • possible isolation **IF**…
 – developmental schedules are so different that a hybrid fetus does not develop properly and is spontaneously aborted
 – if sterile offspring result from successful matings

 • post-mating isolation
 – neanderthal developmental schedule…
 – reconstructed on basis of neanderthal fossils of different ages
 – some derived neanderthal features arise very early in development
 » large endocranial capacity
 » mid-facial projection
 » robusticity
 – early ontogeny of traits suggest more ancient evolution; longer period of separation
 » ontogeny recapitulates phylogeny

• mtDNA from neanderthal fossils!
 – Feldhofer neanderthal > 45 ka
 – Mesaiskaya neanderthal 29 ka

 – both fossils suggest greater genetic distance from AMH
 • HV1 and HV2
 • 23.8 mutations (differences) in mtDNA compared with AMH vs. 4.35 between any two modern Europeans

 – but, what does mtDNA tell us about reproductive isolation?